Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Frontiers in epidemiology ; 2, 2022.
Article in English | EuropePMC | ID: covidwho-2073992

ABSTRACT

Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.

5.
Ann Intern Med ; 174(9): 1240-1251, 2021 09.
Article in English | MEDLINE | ID: covidwho-1789654

ABSTRACT

BACKGROUND: Several U.S. hospitals had surges in COVID-19 caseload, but their effect on COVID-19 survival rates remains unclear, especially independent of temporal changes in survival. OBJECTIVE: To determine the association between hospitals' severity-weighted COVID-19 caseload and COVID-19 mortality risk and identify effect modifiers of this relationship. DESIGN: Retrospective cohort study. (ClinicalTrials.gov: NCT04688372). SETTING: 558 U.S. hospitals in the Premier Healthcare Database. PARTICIPANTS: Adult COVID-19-coded inpatients admitted from March to August 2020 with discharge dispositions by October 2020. MEASUREMENTS: Each hospital-month was stratified by percentile rank on a surge index (a severity-weighted measure of COVID-19 caseload relative to pre-COVID-19 bed capacity). The effect of surge index on risk-adjusted odds ratio (aOR) of in-hospital mortality or discharge to hospice was calculated using hierarchical modeling; interaction by surge attributes was assessed. RESULTS: Of 144 116 inpatients with COVID-19 at 558 U.S. hospitals, 78 144 (54.2%) were admitted to hospitals in the top surge index decile. Overall, 25 344 (17.6%) died; crude COVID-19 mortality decreased over time across all surge index strata. However, compared with nonsurging (<50th surge index percentile) hospital-months, aORs in the 50th to 75th, 75th to 90th, 90th to 95th, 95th to 99th, and greater than 99th percentiles were 1.11 (95% CI, 1.01 to 1.23), 1.24 (CI, 1.12 to 1.38), 1.42 (CI, 1.27 to 1.60), 1.59 (CI, 1.41 to 1.80), and 2.00 (CI, 1.69 to 2.38), respectively. The surge index was associated with mortality across ward, intensive care unit, and intubated patients. The surge-mortality relationship was stronger in June to August than in March to May (slope difference, 0.10 [CI, 0.033 to 0.16]) despite greater corticosteroid use and more judicious intubation during later and higher-surging months. Nearly 1 in 4 COVID-19 deaths (5868 [CI, 3584 to 8171]; 23.2%) was potentially attributable to hospitals strained by surging caseload. LIMITATION: Residual confounding. CONCLUSION: Despite improvements in COVID-19 survival between March and August 2020, surges in hospital COVID-19 caseload remained detrimental to survival and potentially eroded benefits gained from emerging treatments. Bolstering preventive measures and supporting surging hospitals will save many lives. PRIMARY FUNDING SOURCE: Intramural Research Program of the National Institutes of Health Clinical Center, the National Institute of Allergy and Infectious Diseases, and the National Cancer Institute.


Subject(s)
COVID-19/mortality , Hospitalization/statistics & numerical data , Adrenal Cortex Hormones/therapeutic use , Adult , COVID-19/therapy , Critical Care/statistics & numerical data , Female , Hospital Bed Capacity/statistics & numerical data , Hospital Mortality , Humans , Male , Odds Ratio , Respiration, Artificial , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Survival Rate , United States/epidemiology
6.
Front Trop Dis ; 22021.
Article in English | MEDLINE | ID: covidwho-1775687

ABSTRACT

Southeast Asia (SEA) emerged relatively unscathed from the first year of the global SARS-CoV-2 pandemic, but as of July 2021 the region is experiencing a surge in case numbers primarily driven by Alpha (B.1.1.7) and subsequently the more transmissible Delta (B.1.617.2) variants. While initial disease burden was mitigated by swift government responses, favorable cultural and societal factors, the more recent rise in cases suggests an under-appreciation of prior prevalence and over-appreciation of possible cross-protective immunity from exposure to endemic viruses, and highlights the effects of vaccine rollout at varying tempos and of variable efficacy. This burgeoning crisis is further complicated by co-existence of malaria and dengue in the region, with implications of serological cross-reactivity on interpretation of SARS-CoV-2 assays and competing resource demands impacting efforts to contain both endemic and pandemic disease.

7.
MMWR Morb Mortal Wkly Rep ; 71(1): 19-25, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1608771

ABSTRACT

Vaccination against SARS-CoV-2, the virus that causes COVID-19, is highly effective at preventing COVID-19-associated hospitalization and death; however, some vaccinated persons might develop COVID-19 with severe outcomes† (1,2). Using data from 465 facilities in a large U.S. health care database, this study assessed the frequency of and risk factors for developing a severe COVID-19 outcome after completing a primary COVID-19 vaccination series (primary vaccination), defined as receipt of 2 doses of an mRNA vaccine (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) or a single dose of JNJ-78436735 [Janssen (Johnson & Johnson)] ≥14 days before illness onset. Severe COVID-19 outcomes were defined as hospitalization with a diagnosis of acute respiratory failure, need for noninvasive ventilation (NIV), admission to an intensive care unit (ICU) including all persons requiring invasive mechanical ventilation, or death (including discharge to hospice). Among 1,228,664 persons who completed primary vaccination during December 2020-October 2021, a total of 2,246 (18.0 per 10,000 vaccinated persons) developed COVID-19 and 189 (1.5 per 10,000) had a severe outcome, including 36 who died (0.3 deaths per 10,000). Risk for severe outcomes was higher among persons who were aged ≥65 years, were immunosuppressed, or had at least one of six other underlying conditions. All persons with severe outcomes had at least one of these risk factors, and 77.8% of those who died had four or more risk factors. Severe COVID-19 outcomes after primary vaccination are rare; however, vaccinated persons who are aged ≥65 years, are immunosuppressed, or have other underlying conditions might be at increased risk. These persons should receive targeted interventions including chronic disease management, precautions to reduce exposure, additional primary and booster vaccine doses, and effective pharmaceutical therapy as indicated to reduce risk for severe COVID-19 outcomes. Increasing COVID-19 vaccination coverage is a public health priority.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/complications , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adult , Aged , Critical Care/statistics & numerical data , Databases, Factual , Death , Female , Humans , Male , Middle Aged , Respiration, Artificial , Respiratory Insufficiency/complications , Risk Factors , SARS-CoV-2/immunology , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL